A92431.与鑫酱的约定
普及-
通过率:0%
时间限制:1.00s
内存限制:128MB
题目描述
题目背景:
鑫酱从小就与邹酱有一个约定,他们约定从今往后彼此不分离。
在成长路上,他们因为种种原因渐行渐远,然而邹酱始终坚信着总有一天可以找到鑫酱,让鑫酱从此不分离,哪怕与世界为敌。
题目描述:
现在有 n 个敌人阻止鑫酱与邹酱的故事进行下去,每个敌人都有自己的战斗力,于是邹酱到处拜师学艺,找到了炉石酒馆鲍勃,鲍勃教了邹酱两个魔法。
神秘的魔法:
-
使数组中任意一个元素 % 3
-
例如: 3 可以变成 0
-
使数组中任意一个元素变成它的平方 −1 或 +1,
-
例如: 1 可以变成 0 或 2
第一个可以无限次使用,第二个可以使用 k 次,所有敌人的战斗力的和就是两人约定的阻碍值,通过这两个魔法,请问邹酱至少要战胜多少的阻碍(即最少有多少阻碍值)。
输入格式
输入在一行中给出 2 个不超过 1000 的整数 n ( 1≤n≤103 ) 和 k ( 1≤k≤103 ) 。
第二行给出 n 个整数 a1,a2,a3......an ,第 i 个数是第 i 个敌人的战斗力(阻碍值)( 1≤ai≤106 ) 。
输出格式
在一行中输出最少的阻碍值。
输入输出样例
输入#1
1 1 1
输出#1
0
说明/提示
可以使 1 变成 1∗1−1=0 ,所有总阻碍值最小为 0 .