CF1726E.Almost Perfect

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

A permutation pp of length nn is called almost perfect if for all integer 1in1 \leq i \leq n , it holds that pipi11\lvert p_i - p^{-1}_i \rvert \le 1 , where p1p^{-1} is the inverse permutation of pp (i.e. pk11=k2p^{-1}_{k_1} = k_2 if and only if pk2=k1p_{k_2} = k_1 ).

Count the number of almost perfect permutations of length nn modulo 998244353998244353 .

输入格式

The first line contains a single integer tt ( 1t10001 \leq t \leq 1000 ) — the number of test cases. The description of each test case follows.

The first and only line of each test case contains a single integer nn ( 1n31051 \leq n \leq 3 \cdot 10^5 ) — the length of the permutation.

It is guaranteed that the sum of nn over all test cases does not exceed 31053 \cdot 10^5 .

输出格式

For each test case, output a single integer — the number of almost perfect permutations of length nn modulo 998244353998244353 .

输入输出样例

  • 输入#1

    3
    2
    3
    50

    输出#1

    2
    4
    830690567

说明/提示

For n=2n = 2 , both permutations [1,2][1, 2] , and [2,1][2, 1] are almost perfect.

For n=3n = 3 , there are only 66 permutations. Having a look at all of them gives us:

  • [1,2,3][1, 2, 3] is an almost perfect permutation.
  • [1,3,2][1, 3, 2] is an almost perfect permutation.
  • [2,1,3][2, 1, 3] is an almost perfect permutation.
  • [2,3,1][2, 3, 1] is NOT an almost perfect permutation ( p2p21=31=2\lvert p_2 - p^{-1}_2 \rvert = \lvert 3 - 1 \rvert = 2 ).
  • [3,1,2][3, 1, 2] is NOT an almost perfect permutation ( p2p21=13=2\lvert p_2 - p^{-1}_2 \rvert = \lvert 1 - 3 \rvert = 2 ).
  • [3,2,1][3, 2, 1] is an almost perfect permutation.

So we get 44 almost perfect permutations.

首页