CF645F.Cowslip Collections
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
In an attempt to make peace with the Mischievious Mess Makers, Bessie and Farmer John are planning to plant some flower gardens to complement the lush, grassy fields of Bovinia. As any good horticulturist knows, each garden they plant must have the exact same arrangement of flowers. Initially, Farmer John has n different species of flowers he can plant, with ai flowers of the i -th species.
On each of the next q days, Farmer John will receive a batch of flowers of a new species. On day j , he will receive cj flowers of the same species, but of a different species from those Farmer John already has.
Farmer John, knowing the right balance between extravagance and minimalism, wants exactly k species of flowers to be used. Furthermore, to reduce waste, each flower of the k species Farmer John chooses must be planted in some garden. And each of the gardens must be identical; that is to say that each of the k chosen species should have an equal number of flowers in each garden. As Farmer John is a proponent of national equality, he would like to create the greatest number of gardens possible.
After receiving flowers on each of these q days, Farmer John would like to know the sum, over all possible choices of k species, of the maximum number of gardens he could create. Since this could be a large number, you should output your result modulo 109+7 .
输入格式
The first line of the input contains three integers n , k and q ( 1<=k<=n<=100000 , 1<=q<=100000 ).
The i -th ( 1<=i<=n ) of the next n lines of the input contains an integer ai ( 1<=ai<=1000000 ), the number of flowers of species i Farmer John has initially.
The j -th ( 1<=j<=q ) of the next q lines of the input contains an integer cj ( 1<=cj<=1000000 ), the number of flowers of a new species Farmer John receives on day j .
输出格式
After each of the q days, output the sum of the maximum possible number of gardens, where the sum is taken over all possible choices of k species, modulo 109+7 .
输入输出样例
输入#1
3 3 2 4 6 9 8 6
输出#1
5 16
输入#2
4 1 2 6 5 4 3 2 1
输出#2
20 21
说明/提示
In the first sample case, after the first day Farmer John has (4,6,9,8) of each type of flower, and k=3 .
Choosing (4,6,8) lets him make 2 gardens, each with (2,3,4) of each flower, respectively. Choosing (4,6,9) , (4,9,8) and (6,9,8) each only let him make one garden, since there is no number of gardens that each species can be evenly split into. So the sum over all choices of k=3 flowers is 2+1+1+1=5 .
After the second day, Farmer John has (4,6,9,8,6) of each flower. The sum over all choices is 1+2+2+1+1+2+2+3+1+1=16 .
In the second sample case, k=1 . With x flowers Farmer John can make x gardens. So the answers to the queries are 6+5+4+3+2=20 and 6+5+4+3+2+1=21 .