x2+px+q=0x2+2⋅2px+q=0(x+2p)2−4p2+q=0(x+2p)2=4p2−q(x+2p)2=4p2−4qx+2p=2±p2−4qx=2−p±p2−4q
S=a1+a2+a3+a4+⋯+an(a1ak=qk)S=a1+qa1+q2a1+⋯+qn−1a1qS=qa1+q2a1+⋯+qna1(1−q)S=a1−qna1S=1−qa1−qna1S=1−q(1−qn)a1
最后谁能证明下面错
S1=1−1+1−1+1⋯1−S1=1−(1−1+1⋯)=1−1+1−1+1⋯=S1S1=21S2=1−2+3−4+5−6⋯2S2=(1−2+3⋯)+(0+1−2⋯)=1−1+1−1+1⋯=S1S2=41S3=1+2+3+4+⋯S3−S2=0+4+0+8+⋯=4S3−S2=3S3S3=−121
有帮助,赞一个